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Aspects of self-organized criticality in a random driven interface model

M. Jost*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 29 September 1997!

We introduce an external driven version of the solid-on-solid model of interface roughening in disordered
media proposed by Leschhorn@H. Leschhorn, Physica A195, 324 ~1993!#. The properties of the avalanches
triggered by the external driving field are studied numerically in the interface dimensionD51. It is found that
just below the depinning transition the probability distributions of the characteristic quantities of the ava-
lanches exhibit power-law behavior limited only by the system size. The exponents obtained for the probability
distributions are discussed in the context of interface dynamics.@S1063-651X~98!06203-5#

PACS number~s!: 05.40.1j, 64.60.Ak, 68.35.Dv
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I. INTRODUCTION

In recent years, a variety of studies were done to und
stand the interplay of interface depinning and self-organi
criticality ~SOC!; see@1# and references therein. SOC beha
ior in driven systems is characterized by a statistical ste
state far from equilibrium, which is produced by local initi
tions of avalanches where the probability distribution of th
properties exhibit scale invariance; see@2# for a detailed dis-
cussion of SOC. Sandpile automata are well known pro
type models exhibiting SOC@3#. In these models, particle
are added to the system at randomly selected sites un
certain condition for stability is broken. Due to this instab
ity an avalanche starts and it will be terminated if the con
tion for stability is fulfilled in the whole system again.

A typical model for the description of the interface m
tion in disordered systems is the Edwards-Wilkinson~EW!
@4# equation with quenched disorder

]h

]t
5q¹2h1h~x,h!1F, ~1!

where the termq¹2h reflects the smoothing surface tensi
while the uncorrelated quenched noiseh roughens the inter-
face, F represents an applied driving force. The interfa
motion in disordered systems is characterized by a so-ca
depinning transition that is based on the competition of
driving force and the disorder. Depending on the strength
the driving force the interface either gets pinned by the r
dom impurities or it moves steadily with nonzero velocit
Based on dynamic scaling theory@5#, which describes the
scaling behavior of the correlation lengths parallel to the s
strate,

j i;t1/z, ~2!

and perpendicular to it,

j';j i
a , ~3!

the interface motion can be described by local jumps fr
one pinning state to the next one. On a length scalej<j i the
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interface will be moved forward byja over a time periodjz,
wherea denotes the roughness exponent andz the dynamic
exponent, respectively. In comparison with the sandp
models, these local movements between two pinning st
can be named avalanches@6#, whereas inside the avalanche
the elements of the interface are correlated on the len
scalej. Due to the statistical distribution of weak and stro
pinning sitesh the avalanches have different sizes, where
the maximum argument value of the probability distributi
of the avalanche width is limited byj i . Sincej i diverges at
the depinning transition,j i;uF2FCu2n where FC is the
critical driving force, one can expect that at the depinni
transition the probability distributions of the characteris
avalanche quantities are scale invariant@7# so that a relation
between self-organized criticality and the interface dynam
exists.

The depinning transition can be reached either by tun
the driving force to its critical value or by applying a con
stant velocity constraint. In the first case all sites of the
terface are updated in parallel while in the second case
interface site with the largest local force, which is the rig
hand side of Eq.~1!, is advanced only. This quasistatic a
proach to the depinning transition was studied recently@8,9#
and it was found that this extremal dynamics leads to SOC
is the purpose of the present paper to study the avalanch
movements of an interface in disordered media in the vic
ity of the depinning transition in a solid-on-solid~SOS!
model @10#, which reproduces the morphology of an inte
face described by Eq.~1! but not the dynamic behavior@11#.
The definition of the model discussed here~see next section!
suggests applying the formalism of randomly driven sandp
models to produce self-organized interfaces and not
quasi-static formalism.

II. MODEL

The discussed model is defined as follows@10#. Each lat-
tice point of the one-dimensional interface is assigned a r
dom pinning forceh(x,h) that has the valueg with the
probability q and 2g with the probability 12q where the
parameterg measures the strength of the pinning force
Since forqÞ1/2 the distribution of the noiseh is an unsym-
metrical average driving force of^F&.g(2q21) is applied
to the interface. The interface is defined by a set of inte
2634 © 1998 The American Physical Society
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57 2635ASPECTS OF SELF-ORGANIZED CRITICALITY IN A . . .
column heightsh(x,t) with the initial conditionh(x,t50)
50 for x51,2, . . . ,L. At each time stept the sum of the
discretized Laplacian and the noise

v~x!5h~x21,t !1h~x11,t !22h~x,t !1gh~x,h! ~4!

is determined where periodic boundary conditions are
sumed. The growth rule is defined by

h~x,t11!5H h~x,t !11 if v~x!.0

h~x,t ! otherwise,
~5!

where a parallel update is performed for all lattice pointsx.
Additionally, every time a heighth at positionx is increased
a new value forh(x,h) is drawn.

Obviously, if every local velocityv(x) is smaller than or
equal to zero the interface is pinned. If this condition is f
filled, which arises only forq,qC whereqC represents the
critical concentration of the pinning forces, we choose r
domly one positionx. Now h(x) is increased by one unit an
a new value forh(x,h) is drawn. Due to this external driving
an avalanche is started and the interface will be updated
the growing rule Eq.~5! until the interface gets pinned aga
so that the avalanche has stopped; see Fig. 1 for a seri
the avalanche boundaries. Note that such an external dri
of a pinned interface in a model of imbibition in porou
media was performed by Baraba´si et al. @12#.

FIG. 1. A successive series of pinned interface, shown are
boundaries of the avalanches (L51024).
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-

-
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After the relaxation process has stopped the character
quantities of the avalanche are measured. The first one is
area of the avalanche

a5 (
x51

L

h~x,t f !2h~x,t i !, ~6!

where h(x,t i) and h(x,t f) denote the initial and the fina
interface profile of each avalanche, respectively. The n
quantity is the duration of the avalanchet5t f2t i , which is
the time the interface needs to relax from one pinning stat
the next one. Additionally we measured the heighth of the
avalanche defined by the maximum value ofh(x,t f)
2h(x,t i) for all x and the widthw of the avalanche, which is
that length scale at which the values ofh(x,t f) andh(x,t i)
differ from each other. Besides the maximum norm us
here for the characterization of the height and the width of
avalanche, the radius of gyration can be used. Howeve
preliminary examinations of these avalanche quantities
different scaling behavior was obtained. Thus, due to
lower numerical expense only the maximum norm ofh and
w will be analyzed in the following.

III. RESULTS

Approaching the depinning transition from below, th
typical fluctuations of the interface diverge so that only at
depinning transition the whole interface is scale invaria
Since the avalanches describe the interface movements
tween two consecutive pinning states one can expect tha
probability distributions of the characteristic avalanche qu
tities are likewise scale invariant only at or very close to t
depinning transition, which is verified by the analysis of t
field dependence of the correlation length~see below!.

To examine a possible SOC behavior of the system
measured the probability densityP(X) for different system
sizes 128<L<8192 where the symbolX represents one o
the four quantities, areaa, durationt, heighth, or width w,
which characterize the avalanche. The system parameter
g51 andq50.799, which is very close to the critical con
centrationqC.0.8007 @11# where the depinning transition
occurs. The above defined quantities were averaged oveN
'109/L avalanches. The probability densities of the char
teristic quantities exhibit power-law behavior

PX~X!}X2gX ~7!

up to a sharp cutoff length which depends on the system
L; see Figs. 2~a!–2~d!. The exponentsgX are obtained by
power-law fits over the straight portions of the data; s
Table I for the corresponding values. For large system s
L all data show a weak positive bend on logarithmic sca
Since an independent determination of the exponentsgX ,
which can be represented by the correlation length expon
n, the roughness exponenta, and the dynamic exponentz
leads to similar results~see below! this deviation from a
perfect power-law behavior may be traced back onto an
sufficient averaging of the probability distributions due
computer limitations.

The scale invariance of the probability distributions
characterized by an algebraic increase of the cutoff value

e
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FIG. 2. The probability distribution of~a! the area of the avalanchesP(a), ~b! the duration of the avalanchesP(t), ~c! the height of the
avalanchesP(h), and ~d! the width of the avalanchesP(w) for the system sizesL5128, . . . ,8192, symbols see~a!. The curves for
L,8192 are shifted in the downward direction. The solid lines represent corresponding fits according to Eq.~7! with the indicated
exponents. The insets in the figures show the corresponding finite size plots according to Eq.~8!.
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TABLE I. The values of the exponents describing the proba
ity densities P(X) of the quantities that characterized the av
lanches whereX denotes the areaa, the durationt, the heighth,
and the widthw. The errors of the exponentsgX are given by
least-square fits according to Eq.~7! while the errors of the expo
nentskX andnX are determined by scaling plots as discussed in
main text.

X gX kX nX

a 1.0960.01 2.460.12 2.060.1
t 1.1160.01 1.660.08 1.2560.06
h 1.1460.02 1.360.07 0.9860.05
w 1.1260.03 1.260.06 1.060.05
the probability distributions. To study this characteristic w
performed a finite-size scaling analysis@13# according to

PX~X,L !5L2kXf X~L2nXX!. ~8!

The scaling plots are shown in the insets of Figs. 2~a!–2~d!
and the corresponding values of the exponents are liste
Table I. In order that this ansatz has to describe the algeb
decay of Eq.~7! the universal functionf (y) has to scale like
f (y)}y2gX for y!1. Furthermore the three exponentskX ,
nX , andgX have to fulfill the relation

kX5nXgX . ~9!

The values of the exponentskX and nX are determined by
scaling plots. Changing these values approximately by65%
the quality of the corresponding scaling plot is not chang

-
-

e
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57 2637ASPECTS OF SELF-ORGANIZED CRITICALITY IN A . . .
dramatically, so that the error of these exponents is appr
mately 65%. Thus, with these values for the errors of t
exponents the scaling relations Eq.~9! are fulfilled.

In the following we will show that the exponentsnX that
describe the system size dependence of the cutoff length
the probability distributions of the characteristic avalanc
quantities can be described in terms of the dynamic expo
z and the roughness exponenta, which characterize the sca
ing behavior of the two correlation lengthsj i andj' . These
two quantities measure the width and the height of the ty
cal fluctuations of the interface so that it is suggested
identify these quantities with the widthw and the heighth of
the avalanches, respectively. Withj i;L, which is based on
the dynamic scaling hypothesis@5# it follows thatnw51 and
with Eq. ~3! the identitynh5a follows directly. Recently,
for the automaton model of Leschhorn the roughness ex
nentad.1 was obtained just above the depinning transit
@11# in agreement with the value obtained here. The dep
dence ofj' on j i according to Eq.~3! and the dependence o
the avalanche heighth on the avalanche widthw can be
verified by the measurement ofh(w); see Fig. 3. Forw
,512 a valuea.1.17 is obtained for the roughness exp
nent while for larger values ofw one obtains a valuea
51.0160.02, which is in good agreement with the result
the scaling plot. To check the asymptotic scaling behavio
h(w) we measure the structure factor@14#

S~k!5^ĥ~k,t f !ĥ~2k,t f !& ~10!

with ĥ(k,t f)5L21/2(x@h(x,t f)2^h(x,t f)&#eikx. For smallk
the structure factor scales as

S~k!}k2 g̃5k2~2a11!, ~11!

see Fig. 4. The data exhibit an unexpected turning poin
k'2p/1024 so that only the smallestk modes have to be

FIG. 3. The avalanche durationt(w) and the avalanche heigh
h(w) as a function of the avalanche widthw. The error bars oft
andw are given by the width of the distribution functions oft and
h at constantw, respectively. The lines represent fits according
t(w);wz and h(w);wa with z51.2860.03 anda51.0160.02.
The dashed line represents an extrapolation of the fitting cu
h(w) to elucidate the deviation from the asymptotic scaling beh
ior for w,512.
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taken into account to obtain the asymptotic (k→0) behavior.
From a power-law fit of the six smallestk modes we ob-
tained for the roughness exponenta.1, in agreement with
the above analysis. Furthermore, fitting the structure facto
an intermediatek regime withk.2p/1024 one obtains for
the roughness exponenta51.2260.01, which explains the
nonasymptotic scaling behavior ofh for small values ofw.
Due to the definition of the model discussed here the a
lanches are compact objects, i.e., it can be assumed tha
area of an avalanche scales like@9#

a;j ij' ~12!

and thereforena5nw1nh511a. Based on the dynamic
scaling hypothesis, in the timet a fluctuation of the wave-
length j i

z occurs. Therefore, the exponentnt that describes
the system size dependence of the maximum avalanche
ration can be identified with the dynamic exponentz. This
identification is confirmed by a measurement of the a
lanche duration as a function of the avalanche wid
t(w);wz with z51.2860.03; see Fig. 3. The value of th
dynamic exponent obtained here (z.1.25) is smaller than
the value that was obtained just above the depinning tra
tion (zd.1.5) @11#. Thus, due to the additional external di
turbance introduced here the dynamic behavior is chang
Note that different dynamic behaviors for interface mod
and their external driven versions are observed earlier@6#.

As shown exemplary in Fig. 3 for the dependence of
avalanche duration and the avalanche height on the
lanche width, the characteristic avalanche quantities dep
on each other in a statistical manner. Thus, due to the
damental transformation law of probabilities

PX~X!dX5PY~Y!dY, ~13!

the exponentsnX and therefore the roughness expone
a and the dynamic exponentz can be expressed in terms o
the exponentsgX and gY . For instance, fromh;wa

it follows that

e
-

FIG. 4. The structure factorS(k) of the pinned interface posi
tions h(x,t f) as a function ofk for L58192. The solid line repre-

sents a fit according to Eq.~11! with g̃52.99.
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2638 57M. JOST
h2ghdh5w2gha
dh

dw
dw5w2gwdw, ~14!

and thusa5(gw21)/(gh21). Along with Eq. ~9! it is
therefore possible to calculate the whole exponents des
ing the finite-size behavior of the characteristic quantities
the avalanches if one of the eight exponentsgX or kX , re-
spectively, and the roughness exponent as well as the
namic exponent are known. For the conjecture that the p
ability distribution of the width of an avalanche obeys t
scaling form

P~w!.
1

wg
r~w/j i! ~15!

with j i}(FC2F)2n near the depinning transition Naraya
and Fisher@15# obtained with scaling arguments for the E
equation with quenched disorderg5D1121/n. Further-
more they obtainedn51/(22a) so that no new independen
exponent arises in the description of the avalanche prope
in the EW model. At the depinning transition (FC5F) the
only characteristic length scale is the system lengthL andj i
in Eq. ~15! can be replaced byL. Thus the exponentgw can
be identified withg, which leads togw.1 and along with
a.1 to gX.1 for the remaining exponentsgX . However,
these results are in opposition to the numerical values
yield to values larger than one, even if one takes the e
bars of the exponents into consideration.

The determination of the driving field dependence of
correlation lengthj i;(qC2q)2n, which is given by the
driving field dependence of the maximum value of the a
lanche width results inn51.1760.02 for the correlation
length exponentn, see Fig. 5. This analysis shows that t
scale invariance of the probability distributions of the ch
acteristic avalanche quantities exists only at the depinn

FIG. 5. Theq dependence of the parallel correlation lengthj i
where the solid line represents a fit according toj i;(qC2q)2n

leading ton51.1760.02.
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transition. Furthermore, it shows that the discrepancy of
numerical resultsgX.1.1 with the theoretical expectation
can be traced back onto the fact that the exponent rela
n51/(22a) obtained for the EW model is not right here. A
discussed above the correlation length exponentn corre-
sponds to the exponentgw , gw5221/n51.1560.02. Fur-
thermore, using Eq.~13! one obtainsgh511(gw21)/a
51.1560.03, gt511(gw21)/z51.1260.04, andga51
1(gw21)/(a11)51.0860.01. Therefore, the calculate
valuesgX are in agreement with the values obtained direc
with Eq. ~7!. Since the exponentsnX are determined also by
a and z the finite-size behavior of the probability distribu
tions of the characteristic avalanche quantities is determi
completely by the exponentsa, z, and n so that no new
exponents have to be introduced to describe the behavio
the avalanches.

IV. SUMMARY

To summarize, we have shown that a local disturbance
the pinned interface described by the automaton mode
Leschhorn triggers an avalanche whereas the probability
tributions of the characteristic avalanche quantities are s
invariant. A detailed analysis shows that the probability d
tributions are determined completely by the roughness ex
nent a, the dynamic exponentz, and the correlation length
exponentn. Furthermore, the analysis of the driving fie
dependence of the correlation length shows that the corr
tion length exponentn is not given by the scaling relation
n51/(22a), which is exact for the Edwards-Wilkinso
model with quenched disorder. Thus the automaton mode
Leschhorn does not belong to the Edwards-Wilkinson u
versality class, which confirms the results presented ea
@11#.

Following @16# the characteristic property of self
organized critical systems is the occurrence of sca
invariant avalanches triggered by disturbances. In the con
discussed here the term self-organization means that afte
external disturbance a system turns back into a stable s
Thus due to the obtained scale-invariant probability distrib
tions of the characteristic avalanche properties the interf
model discussed here shows self-organized criticality. Ho
ever, a stricter formulation of SOC@2# requires that the scale
invariance of the quantities are generic and are not achie
by fine tuning of a relevant parameter. In the model d
cussed here scale invariance is observed only at the de
ning transition, which is achieved by choosing the critic
concentrationqC of the pinning sites. Thus the occurrence
SOC is only given in the weaker sense of@16#.
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