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Aspects of self-organized criticality in a random driven interface model
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We introduce an external driven version of the solid-on-solid model of interface roughening in disordered
media proposed by LeschhofH. Leschhorn, Physica A95 324(1993]. The properties of the avalanches
triggered by the external driving field are studied numerically in the interface dimefsidh. It is found that
just below the depinning transition the probability distributions of the characteristic quantities of the ava-
lanches exhibit power-law behavior limited only by the system size. The exponents obtained for the probability
distributions are discussed in the context of interface dynarfsd063-651X98)06203-3

PACS numbd(s): 05.40:+j, 64.60.Ak, 68.35.Dv

I. INTRODUCTION interface will be moved forward bg* over a time period?,
wherea denotes the roughness exponent artle dynamic
In recent years, a variety of studies were done to underexponent, respectively. In comparison with the sandpile
stand the interplay of interface depinning and self-organizednodels, these local movements between two pinning states
criticality (SOQ; see[1] and references therein. SOC behav-can be named avalanchigd, whereas inside the avalanches
ior in driven systems is characterized by a statistical steadthe elements of the interface are correlated on the length
state far from equilibrium, which is produced by local initia- scaleé. Due to the statistical distribution of weak and strong
tions of avalanches where the probability distribution of theirpinning sitesn the avalanches have different sizes, whereas
properties exhibit scale invariance; §€é for a detailed dis- the maximum argument value of the probability distribution
cussion of SOC. Sandpile automata are well known protoef the avalanche width is limited bg . Since¢ diverges at
type models exhibiting SOE3]. In these models, particles the depinning transitioné|~|F—F¢| " where F¢ is the
are added to the system at randomly selected sites until @itical driving force, one can expect that at the depinning
certain condition for stability is broken. Due to this instabil- transition the probability distributions of the characteristic
ity an avalanche starts and it will be terminated if the condi-avalanche quantities are scale invarigfitso that a relation

tion for stability is fulfilled in the whole system again. between self-organized criticality and the interface dynamics
A typical model for the description of the interface mo- exists.

tion in disordered systems is the Edwards-Wilking&WV) The depinning transition can be reached either by tuning

[4] equation with quenched disorder the driving force to its critical value or by applying a con-

stant velocity constraint. In the first case all sites of the in-
1) terface are updated in parallel while in the second case the

interface site with the largest local force, which is the right
_ ~ hand side of Eq(1), is advanced only. This quasistatic ap-
where the term¥V2h reflects the smoothing surface tension proach to the depinning transition was studied rece@§]
while the uncorrelated quenched noigeoughens the inter- - and it was found that this extremal dynamics leads to SOC. It
face, F represents an applied driving force. The interfacejs the purpose of the present paper to study the avalanchelike
motion in disordered systems is characterized by a so-callegiovements of an interface in disordered media in the vicin-
depinning transition that is based on the competition of thqty of the depinning transition in a solid-on-solit5O9
driving force and the disorder. Depending on the strength ofnodel [10], which reproduces the morphology of an inter-
the driving force the interface either gets pinned by the ranface described by Eq1) but not the dynamic behavipt.1].
dom impurities or it moves steadily with nonzero velocity. The definition of the model discussed hésee next section
Based on dynamic scaling theof§], which describes the syggests applying the formalism of randomly driven sandpile
scaling behavior of the correlation lengths parallel to the submodels to produce self-organized interfaces and not the
strate, quasi-static formalism.

5” ~t1/Z, (2)

dh
EzﬁVZth n(x,h)+F,

Il. MODEL

and perpendicular to it, . . '
The discussed model is defined as folldi§]. Each lat-

£~ &, (3) tice point of the one-dimensional interface is assigned a ran-
dom pinning forcen(x,h) that has the valug with the
the interface motion can be described by local jumps fromprobability g and —g with the probability -q where the
one pinning state to the next one. On a length s¢&l€ the  parameterg measures the strength of the pinning forces.
Since forg+# 1/2 the distribution of the noiseg is an unsym-
metrical average driving force dfF)=g(2q—1) is applied
*Electronic address: mjt@hal6000.thp.Uni-Duisburg.DE to the interface. The interface is defined by a set of integer
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2782 After the relaxation process has stopped the characteristic
quantities of the avalanche are measured. The first one is the

area of the avalanche

L
a= }_}1 h(x,ty) —h(x,t), (6)

where h(x,t;) and h(x,t;) denote the initial and the final
interface profile of each avalanche, respectively. The next
quantity is the duration of the avalanchet;—t;, which is

the time the interface needs to relax from one pinning state to
the next one. Additionally we measured the heighaf the
avalanche defined by the maximum value bfx,t;)
—h(x,t;) for all x and the widthw of the avalanche, which is
that length scale at which the valuestdix,t;) andh(x,t;)
differ from each other. Besides the maximum norm used
here for the characterization of the height and the width of an
avalanche, the radius of gyration can be used. However, in
preliminary examinations of these avalanche quantities no
different scaling behavior was obtained. Thus, due to the
lower numerical expense only the maximum normhodnd

w will be analyzed in the following.

h(z,t)

IIl. RESULTS

Approaching the depinning transition from below, the

typical fluctuations of the interface diverge so that only at the
1 w 1024 depinning transition the whole interface is scale invariant.
Since the avalanches describe the interface movements be-

FIG. 1. A successive series of pinned interface, shown are théveen two consecutive pinning states one can expect that the
boundaries of the avalanchels=1024). probability distributions of the characteristic avalanche quan-
tities are likewise scale invariant only at or very close to the
depinning transition, which is verified by the analysis of the
field dependence of the correlation lengsiee below.

To examine a possible SOC behavior of the system we
measured the probability densiB(X) for different system
sizes 128 L <8192 where the symbdf represents one of
the four quantities, area, duration7, heighth, or width w,
which characterize the avalanche. The system parameters are
is determined where periodic boundary conditions are asg=1 andq=0.799, which is very close to the critical con-

column heightsh(x,t) with the initial conditionh(x,t=0)
=0 for x=1,2,... L. At each time stefg the sum of the
discretized Laplacian and the noise

v(X)=h(x—=1t)+h(x+1t)—2h(x,t)+gn(x,h) (4)

sumed. The growth rule is defined by centrationqc=0.8007[11] where the depinning transition
occurs. The above defined quantities were averaged Mver
h(x,t)+1 if v(x)>0 ~10%/L avalanches. The probability densities of the charac-
h(x,t+1)= (5) teristic quantities exhibit power-law behavior

h(x,t) otherwise,

Px(X)ocX™ 7% )

where a parallel update is performed for all lattice points
Additionally, every time a heighh at positionx is increased up to a sharp cutoff length which depends on the system size
a new value forp(x,h) is drawn. L; see Figs. @&)—2(d). The exponentgyy are obtained by

Obviously, if every local velocity (x) is smaller than or power-law fits over the straight portions of the data; see
equal to zero the interface is pinned. If this condition is ful- Table | for the corresponding values. For large system sizes
filled, which arises only fog<qc whereqc represents the L all data show a weak positive bend on logarithmic scales.
critical concentration of the pinning forces, we choose ranSince an independent determination of the exponests
domly one positiorx. Now h(x) is increased by one unit and which can be represented by the correlation length exponent
a new value forp(x,h) is drawn. Due to this external driving v, the roughness exponent and the dynamic exponent
an avalanche is started and the interface will be updated bigads to similar resultgsee below this deviation from a
the growing rule Eq(5) until the interface gets pinned again perfect power-law behavior may be traced back onto an in-
so that the avalanche has stopped; see Fig. 1 for a series gifficient averaging of the probability distributions due to
the avalanche boundaries. Note that such an external drivingpmputer limitations.
of a pinned interface in a model of imbibition in porous The scale invariance of the probability distributions is
media was performed by Baradiat al. [12]. characterized by an algebraic increase of the cutoff value of
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FIG. 2. The probability distribution ofa) the area of the avalanch&¢a), (b) the duration of the avalanch&{ 7), (c) the height of the
avalanchesP(h), and (d) the width of the avalancheB(w) for the system sizet =128, ... 8192, symbols se¢a). The curves for
L<8192 are shifted in the downward direction. The solid lines represent corresponding fits according(® ®&igh the indicated
exponents. The insets in the figures show the corresponding finite size plots accordingd8p Eq.

the probability distributions. To study this characteristic we
performed a finite-size scaling analy$i3] according to

TABLE I. The values of the exponents describing the probabil-
ity densities P(X) of the quantities that characterized the ava-

lanches where&X denotes the area, the durationr, the heighth,
and the widthw. The errors of the exponentgy are given by
least-square fits according to E@) while the errors of the expo-

Py(X,L) =L~ *xfy (L™ "%X).

®

The scaling plots are shown in the insets of Figs)22(d)
and the corresponding values of the exponents are listed in

. : : .. Table I. In order that this ansatz has to describe the algebraic
nentsky andvy are determined by scaling plots as discussed in the . . -
X X y ap decay of Eq(7) the universal functiori(y) has to scale like

vy, andyy have to fulfill the relation

main text.
X Yx Kx Vx
a 1.09+0.01 2.4-0.12 2.0:0.1
T 1.11+0.01 1.6-0.08 1.25-0.06
h 1.14+0.02 1.3£0.07 0.98-0.05
w 1.12+0.03 1.2£0.06 1.6:0.05

KX=VX¥x-

f(y)xcy™ 7x for y<1. Furthermore the three exponemig,

©

The values of the exponenis, and vy are determined by
scaling plots. Changing these values approximately-#o

the quality of the corresponding scaling plot is not changed
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FIG. 3. The avalanche duratior{w) and the avalanche height
h(w) as a function of the avalanche widih The error bars ofr
andw are given by the width of the distribution functions naind
h at constanw, respectively. The lines represent fits according to
7(w)~w?* and h(w) ~w?* with z=1.28+0.03 anda=1.01*+0.02.
The dashed line represents an extrapolation of the fitting curvéaken into account to obtain the asymptote0) behavior.

h(w) to elucidate the deviation from the asymptotic scaling behavFrom a power-law fit of the six smallekt modes we ob-

ior for w<512. tained for the roughness exponent=1, in agreement with
the above analysis. Furthermore, fitting the structure factor in

dramatically, so that the error of these exponents is approxian intermediaték regime withk>2#/1024 one obtains for

mately =5%. Thus, with these values for the errors of thethe roughness exponent=1.22+0.01, which explains the

exponents the scaling relations K@) are fulfilled. nonasymptotic scaling behavior bffor small values ofw.

In the following we will show that the exponentg that  Due to the definition of the model discussed here the ava-
describe the system size dependence of the cutoff lengths lanches are compact objects, i.e., it can be assumed that the
the probability distributions of the characteristic avalanchearea of an avalanche scales I{l&g
guantities can be described in terms of the dynamic exponent
z and the roughness exponentwhich characterize the scal- a~§é, (12)
ing behavior of the two correlation lengtifsandé, . These
two quantities measure the width and the height of the typi- .
cal fluctuations of the interface so that it is suggested tnd thereforeva=wy,+v,=1+a. Based on the dynamic
identify these quantities with the width and the heighb of  SCaling hypothesis, in the time a fluctuation of the wave-
the avalanches, respectively. Wigh~L, which is based on length & occurs. Therefore, the exponenf that describes
the dynamic scaling hypothedis] it follows that»,,—=1 and  the System size dependence of the maximum avalanche du-
with Eq. (3) the identity »,= a follows directly. Recently, ation can be identified with the dynamic exponentThis
for the automaton model of Leschhorn the roughness expddentification is confirmed by a measurement of the ava-
nentay=1 was obtained just above the depinning transition@che ‘3““_"‘“0” as a function of the avalanche width
[11] in agreement with the value obtained here. The depenZ(W)~Ww* with z=1.28+0.03; see Fig. 3. The value of the
dence of¢, on ¢ according to Eq(3) and the dependence of dynamic exponent obta'lned 'here:(1.25) is smgllgr than .
the avalanche heigHt on the avalanche widthv can be the value that was obtained just above .the depinning trgn5|-
verified by the measurement ¢fw): see Fig. 3. Fow  tion (zd~—~1.5) [11]. Thus, due to the agjd|t|onallext_ernal dis-
<512 a valuea=1.17 is obtained for the roughness eXpo_turbance |nt'roduced here .the dynqmlc behawor is changed.
nent while for larger values ofv one obtains a valuer Note that different dynamlc b_ehawors for interface models
=1.01*+0.02, which is in good agreement with the result of and their external drlven_ver_smns are observed edipr
the scaling plot. To check the asymptotic scaling behavior of As shown exe_mplary in Fig. 3 for the dependence of the
h(w) we measure the structure facfds] avalanchg duration and the .avalanche height on the ava-

lanche width, the characteristic avalanche quantities depend
on each other in a statistical manner. Thus, due to the fun-

FIG. 4. The structure factdB(k) of the pinned interface posi-
tions h(x,t;) as a function ok for L=8192. The solid line repre-

sents a fit according to E@11) with y=2.99.

S(k)=(h(k,th(—k.t;)) 10 gamental transformation law of probabilities
with h(k,t)) =L~ Y25, [h(x,t;) — (h(x.t;))]e**. For smallk
the structure factor scales as Px(X)dX=Py(Y)dY, 13
s(k)ock—;zk—@f”l), (11) the exponentsvy and therefore the roughness exponent

a and the dynamic exponemtcan be expressed in terms of
see Fig. 4. The data exhibit an unexpected turning point a@he exponentsyyx and yy. For instance, fromh~w®
k~2m/1024 so that only the smallekt modes have to be it follows that
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4 transition. Furthermore, it shows that the discrepancy of the
numerical resultsyy=1.1 with the theoretical expectations
can be traced back onto the fact that the exponent relation
v=1/(2— «) obtained for the EW model is not right here. As
discussed above the correlation length exponentorre-

10 sponds to the exponent,, y,=2—1/v=1.15+0.02. Fur-
thermore, using Eq(13) one obtainsy,=1+(y,— 1)/«
=1.15+0.03, v,=1+(y,—1)/z=1.12+0.04, and y,=1
+(yw—1)/(a+1)=1.08-0.01. Therefore, the calculated
10 valuesyy are in agreement with the values obtained directly
with Eq. (7). Since the exponents, are determined also by

a and z the finite-size behavior of the probability distribu-
tions of the characteristic avalanche quantities is determined

&ul(q)

10 3 5 B 0 completely by the exponents, z, and » so that no new
10 10 10 10 . . .
de-q exponents have to be introduced to describe the behavior of
¢ the avalanches.
FIG. 5. Theq dependence of the parallel correlation length IV. SUMMARY
where the solid line represents a fit accordingéje-(qc—q) ™"
leading tor=1.17+0.02. To summarize, we have shown that a local disturbance of

the pinned interface described by the automaton model of
dh Leschhorn triggers an avalanche whereas the probability dis-
h™hdh=w" 7 dw=w""wdw, (14 tributions of the characteristic avalanche quantities are scale
invariant. A detailed analysis shows that the probability dis-
and thusa=(y,—1)/(y,—1). Along with Eq. (9) it is tributions are determined completely by the roughness expo-
therefore possible to calculate the whole exponents descritient e, the dynamic exponer, and the correlation length
ing the finite-size behavior of the characteristic quantities ofxponenty. Furthermore, the analysis of the driving field
the avalanches if one of the eight exponepjsor «x, re-  dependence of the correlation length shows that the correla-
spectively, and the roughness exponent as well as the dyion length exponent is not given by the scaling relation
namic exponent are known. For the conjecture that the probr=1/(2—a), which is exact for the Edwards-Wilkinson
ability distribution of the width of an avalanche obeys the model with quenched disorder. Thus the automaton model of
scaling form Leschhorn does not belong to the Edwards-Wilkinson uni-
versality class, which confirms the results presented earlier
1 [11].
P(w)=—p(w/§)) (15 Following [16] the characteristic property of self-
w organized critical systems is the occurrence of scale-
with ¢<(Fe—F)~* near the depinning transition Narayan invariant avalanches triggered by disturbances. In the context

and Fishef15] obtained with scaling arguments for the Ew discussed here the term self-organization means that after an
equation with quenched disorder="D+1—1/v. Further- external disturbance a system turns back into a stable state.

more they obtained=1/(2— «) so that no new independent Thus due to the obtained scale-invariant probability distribu-

exponent arises in the description of the avalanche propertidiOns of the characteristic avalanche properties the interface

in the EW model. At the depinning transitiofF {=F) the model dlsgussed here ;hows self—organ[zed criticality. How-

only characteristic length scale is the system lerigand ever, a stricter formulation of SO[2] requires that the scale

in Eq. (15) can be replaced by. Thus the exponent,, can invariance of the quantities are generic and are not achieved
. . W

be identified withy, which leads toy,~1 and along with by fing ';]uning Ofl a releyant p_ararg]eter. (;n ﬂ;e n:?ﬁlelddis_-
a=1 10 yx=1 for the remaining exponentsy . However, cussed here scale invariance is observed only at the depin-

these results are in opposition to the numerical values th4ling transition, which is achieved by choosing the critical

yield to values larger than one, even if one takes the errogg'éeigtgﬁ:grgﬁ/g;taetﬁgnwggksgrezé:Q;[Smé?e occurrence of

bars of the exponents into consideration.

The determination of the driving field dependence of the
correlation lengthé~(qc—q) ™", which is given by the
driving field dependence of the maximum value of the ava- | would like to thank S. Lbeck for many helpful discus-
lanche width results inv=1.17+0.02 for the correlation sions on SOC and K. D. Usadel for a careful reading of the
length exponenv, see Fig. 5. This analysis shows that the manuscript. This work was supported by the Deutsche Fors-
scale invariance of the probability distributions of the char-chungsgemeinschaft through GraduiertenkoBtiktur und
acteristic avalanche quantities exists only at the depinnin@ynamik heterogener Systeme
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